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•  Scale dependence of moments of temperature, water vapor & cloud properties 
important at small scales


•  Model parameterizations

•  Observing systems


•  Scale dependence of AIRS temperature and water vapor variance have:


•  Very different characteristics

•  Large temporal/spatial variability


•  CloudSat has similar complex structure – no universal PDF


•  Implications for climate modeling and future satellite observations


Take-home Messages




Ratio of Variability at Different Scales
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Cirrus IWC from CloudSat
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•  Power spectral density/structure function exponents 

•  Popular with u and v wind components, θ, trace gas concentrations, LWP


•  Theory and numerical modeling: e.g., Kolmogorov (1941); Charney (1971); Lilly 
(1983); Lindborg (1999); Tung and Orlando (2003); many others…


•  Observations: e.g., Nastrom and Gage (1985); Cahalan et al. (1989;1994); Davis et 
al. (1994); Tjemkes and Visser (1994); Bacmeister et al. (1996); Pierrehumbert 
(1996); Cho et al. (1999a,b), many others… 

•  Mesoscale “break” near 500–800 km (observations, models, and theory)


•  Generally, –3 power law scaling at > 800 km, –5/3 at < 400 km

•  Structure function exponents of 1.0 and 0.33, respectively


How to Summarize Variance Information Over Scales?




Aircraft-derived Power Law Scaling in the Mesoscale
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Power Spectrum of LWP in Sc from Landsat


Cahalan and Snider (1989), RSE 



Power Spectra of LWP in Sc from MODIS
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•  Spectra of T and q variance


•  “Poor Man’s spectral analysis”: Cahalan et al. (1994); Wood et al. (2002)

•  Power spectrum scaling of [–5/3, –2, –3] ≅ [0.33, 0.5, 1.0] for variance scaling


•  Scaling derived separately: 


•  For T and q in clear/cloudy pixels

•  For length scales of 150–400 km (small) and 800–1200 km (large)


•  Differences between exponents highlight mesoscale “break”

•  For each AIRS standard pressure level in troposphere


•  Derive over entire globe from September 2006 to August 2007


•  First global climatology of T and q to our knowledge

•  Organize by season (SON, DJF, MAM, JJA)


Variance Scaling with AIRS




Scaling of T and q near coast of S. America


Length scale spectra of σT (top) and σq (bottom) for clear scenes. Gray lines are 
illustrative spectra for α = 0.33 (weaker slope) and α = 1.0 (steeper slope). 
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Diurnal differences in Scaling of T and q
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Zonal-averaged differences between T and q
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As a function of land/ocean, clear cloud, etc.
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Zonal-averaged/seasonal differences at small scales
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•  Compare simulations to observations 

•  Different models  >>  different parameterizations/model architecture  >> 
different scaling laws?


•  Satellite sampling not complete & model-observational parameters not 
necessarily equivalent  >>  how comparable to models?


(At Least) Two Possible Pathways to Use  
AIRS Variance Scaling with Models: 



Compare Simulated and Observational Power Spectra
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•  Compare simulations to observations 

•  Different models  >>  different parameterizations/model architecture  >> 
different scaling laws?


•  Satellite sampling not complete & model-observational parameters not 
necessarily equivalent  >>  how comparable to models?


•  Constrain model physics with scaling observations


•  Use scaling exponents to constrain PDF-based parameterizations


(At Least) Two Possible Pathways to Use  
AIRS Variance Scaling with Models: 



Constrain model physics with scaling observations


Cusack et al. (1999), QJRMS 
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“Scaling” – Control “Scaling” – ECMWF Re-analysis 



Summary: What is AIRS scaling useful for?

•  TBD


•  Is tightness of agreement between model/observational exponents related to 
“model performance”?


•  Probably one of many measures that are necessary – TBD


•  Can AIRS scaling be extrapolated to scales < 150 km?


•  TBD

•  Little aircraft in situ evidence for T and q scale breaks < 150 km

•  Phase changes (i.e., clouds) perturb T and q fields – adjustment in variance 


•  Cloud type/regime scaling differences?

•  Cusack et al. (1999) show simple adjustment to –5/3 helps a lot!




A Few Wishes and Desires for Future Sounding 


•  Higher spatial and vertical resolution T and q


•  Do breaks exist at scales < 150 km?

•  What spatial/vertical resolution do we really need?

•  Vertical resolution important for boundary layer, tropopause, small-scale T and q features


•  Sounding within clouds – importance of microwave


•  Simultaneous observations of T, q and cloud property PDFs


•  Leave no samples behind!



